Spinal cord injury and training status impact the differentiated RPE response to incremental wheelchair propulsion

Dr Michael Hutchinson, Jonny Kilgallon, Dr Christof Leicht, Prof. Vicky Tolfrey

@PHC_Lboro @MJHutchinson90 M.J.Hutchinson@lboro.ac.uk

Peter Harrison Centre for Disability Sport

BACKGROUND

- Subjective measure of exercise intensity.
- Uses:
 - Exercise prescription.
 - Monitor training load.
- Whole-body, overall RPE (RPE₀)
- Differentiated RPE:
 - Peripheral (RPE_P)
 - Central (RPE_C)

- Nothing at all
- 0 Nothing at all
- 0.5 Extremely weak
- 1 Very weak
- 2 Weak (light)
- 3 Moderate
- 4
- 5 Heavy 6

7

8

9

10

- No exertion at all Extremely light Very light Light Somewhat hard
- 14

6

7

8

9

10

11

12

13

- 15 Hard (heavy)
- 16
- 17 Very hard
- 18
- 19 Extremely hard
- 20 Maximal exertion

DIFFERENTIATED RPE

- Used in able-bodied (AB) team sports to monitor different types of training session (McLaren et al., 2017).
- No effect of training status on differentiated RPE at equal relative intensity (%VO_{2max}) in AB performing lower body exercise (Bolgar et al., 2010).
- What about during upper body exercise?
 - Increased RPE_P in untrained AB vs. trained wheelchair sports people at 60% VO_{2peak} (Lenton et al., 2008).
 - **No difference** in peak RPE_P and RPE_C in active men with paraplegia (AI-Rahamneh & Eston, 2011).
 - **No difference** in relationship of differentiated RPE with VO₂ in trained men with tetraplegia (Paulson et al., 2013).
 - Increased RPE_P vs RPE_C during incremental exercise in low-active people with tetraplegia, but not paraplegia (Au et al., 2017).

AIM

• To investigate the role of **i) training status** and **ii) cervical SCI (CSCI)** on differentiated RPE responses to incremental wheelchair propulsion.

• 3 groups:

- Non upper-body trained **AB** (n = 20).
- Highly-trained wheelchair rugby players:
 - With **CSCI** (n = 9; C5-7; motor and sensory complete).
 - Non-SCI (n = 9; amputation = 4; arthrogryposis, cerebral palsy, osteogenesis imperfecta, polyneuropathy, Roberts Syndrome = 1).

METHODS

 RPE_P and RPE_C on CR-10.

0 Nothing at all Extremely weak 0.5 Very weak 1 Weak (light) 2 Moderate 3 4 AB performed 2 familiarisation sessions. 5 Heavy Incremental wheelchair propulsion $(1.2-3.2 + 0.1 \text{ m} \cdot \text{s}^{-1} \cdot \text{min}^{-1})$. 6 7 8 RPE fit against VO₂ using a quadratic function (Au et al., 2017). 9 Data extraction from 50-100% VO_{2peak.} 10 Extremely heavy

	AB	CSCI	Non-SCI
Age (years)	22 ± 2	29 ± 7	28 ± 5
Body mass (kg)	86.7 ± 11.4 ^{*†}	68.9 ± 12.4	60.1 ± 12.8
VO _{2peak} (L·min ⁻¹)	$3.1 \pm 0.5^{*\dagger}$	1.5 ± 0.5	$2.4 \pm 0.7^{\dagger}$
VO _{2peak} (ml·kg ⁻¹ ·min ⁻¹)	$35.7 \pm 6.0^{\dagger}$	21.3 ± 5.9	$40.1 \pm 5.3^{+}$
Peak speed (m·s ⁻¹)	2.7 ± 0.4	2.4 ± 0.5	$3.5 \pm 0.5^{\dagger \ddagger}$

*: significantly greater than Non-SCI, †: significantly greater than CSCI, ‡: significantly greater than AB.

RPE_P RPE_C

RESULTS: Training status

- In AB:
 - RPE_P > RPE_C (6.6 ± 2.8 vs 4.5 ± 2.5, P < 0.005).
 - RPE_P developed faster than RPE_C (P = 0.01).
- In Non-SCI and CSCI:
 - No difference between RPE_P and RPE_C.

- \uparrow respiratory exchange ratio in AB (1.02 ± 0.10) versus CSCI (0.82 ± 0.11).
- \uparrow **blood lactate** in AB (7.98 ± 2.53) versus CSCI (4.66 ± 1.57 mmol·L⁻¹).
 - ↑ metabolism-derived afferent feedback leading to ↑ RPE_P in AB?

- ↑ heart rate in AB (146 ± 24) and Non-SCI (166 ± 20) versus CSCI (104 ± 15 beats min⁻¹).
- ↑ ventilation in AB (75.0 ± 26.0) and Non-SCI (59.2 ± 28.8) versus CSCI (35.1 ± 16.6 L·min⁻¹).
 - \uparrow active musculature, or feedback from the muscles leading to \uparrow RPE_c?

PRACTICAL IMPLICATIONS

- Training status impacts relationship between RPE_P and RPE_C during upper body exercise:
 - Young / newer athletes.
- CSCI significantly impacts on differentiated RPE:
 - Findings from AB cannot be applied to CSCI population.
 - Implications for practitioners working in Paralympic team sports.
- Mechanistic basis of RPE response:
 - Support for the role of afferent feedback.
 - Further research into the area needed.

Thank you

Michael Hutchinson

@PHC_Lboro @MJHutchinson90

M.J.Hutchinson@lboro.ac.uk

Peter Harrison Centre for Disability Sport